
Serie 01 - Solution

Preamble

1.1 Dopant ionization

As seen during the course, the number of holes p0 and electrons n0 in a semicon-
ductor are at equilibrium. Most of the interesting effects of the semiconductor
arise from the carrier concentration gradient. To change the carrier concentra-
tion, we use dopants, which are atoms that are similar in size to the atoms in the
semiconductor. Therefore, they can easily substitute them without significantly
altering the lattice. Dopants have the ability to more easily give or capture
electrons. We refer to this phenomenon of giving or taking electrons as dopant
ionization. This phenomenon is temperature-dependent (more information on it
in the next series). An approximation that is commonly made, and considered
to be true in this course unless specifically denied, is that at room temperature
all dopants are ionized.

For example, boron (B) is commonly used as an acceptor dopant in sili-
con (Si). At low temperatures, the acceptor atoms are not ionized and do not
capture any electrons. As the temperature increases, the probability of the
acceptor atom capturing an electron also increases. When this happens, the
acceptor atom becomes negatively charged as it gets ionized, creating a hole
in the valence band that carries a positive charge. This process maintains the
overall neutrality of the semiconductor.

An analogous reasoning can be applied to donors. If the doping level or
doping concentration of acceptors is denoted as Na in

[
cm−3

]
, the concentration

of ionized acceptors is denoted as N−
a , also in

[
cm−3

]
. Similarly, the doping

level for donors is denoted as Nd, and the concentration of ionized donors is
denoted as N+

d . Therefore, at room temperature, it is often stated:

N−
a = Na & N+

d = Nd (1)

As explained, the doping ionization phenomenon does not alter the overall
neutrality of the semiconductor. Therefore, the charge neutrality equation can
be written as: ∑

Q = po +N+
d − n0 −N−

a = 0 (2)

Given constants

k = 1.3806504 · 10−23 [J/K]
q = 1.6021765 · 10−19 [C]
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Exercise 01

Calculate the carrier concentration at thermal equilibrium in an n-type semi-
conductor at T = 300 [K] doped with Nd = 1016

[
cm−3

]
. The intrinsic carrier

concentration in this semiconductor is ni = 1.5 · 1010
[
cm−3

]
.

Solution

As explained in the preamble of this series, all the dopants are considered to
be ionized at room temperature. In our case, we don’t have any acceptors, so
Na = 0.

N+
d = Nd (3)

Therefore, the charge neutrality equation is:∑
Q = n0 +N−

a − p0 −N+
d = 0 (4)

Since we are in thermal equilibrium, we can write:

p0 =
n2
i

n0
(5)

And Therefore:

n0 +N−
a − n2

i

n0
−N+

d = 0 (6)

n2
0 + n0

(
N−

a −N+
d

)
− n2

i = 0 (7)

By solving this second-degree equation, we obtain:

n0 =
N+

d −N−
a +

√(
N−

a −N+
d

)2
+ 4n2

i

2
≈ 1 · 1016

[
cm−3

]
(8)

We observe that for N+
d ≫ ni, we have n0 ≈ N+

d . And as we still are in
equilibrium:

p0 =
n2
i

n0
≈ 2.25 · 104

[
cm−3

]
(9)

To Go Further

An analogous reasoning as the previous one can be applied, but this time by
extracting p0, which gives us:

p0 =
N−

a −N+
d +

√(
N+

d −N−
a

)2
+ 4n2

i

2
(10)
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By rearranging the equation, we obtain:

p0 =
N−

a −N+
d

2
+

√(
N−

a −N+
d

2

)2

+ n2
i (11)

In this form, three useful approximations can be easily derived. The first case
arises when N−

a −N+
d is much larger than ni. The second case occurs when the

absolute value of N−
a −N+

d is much smaller than ni. And the last case occurs
when N+

d −N−
a is much larger than ni.

Case 1: If N−
a −N+

d ≫ ni, the following approximation can be made:

p0 ≈
N−

a −N+
d

2
+

√(
N−

a −N+
d

2

)2

= N−
a −N+

d (12)

And since n0:

n0 ≈ n2
i

N−
a −N+

d

(13)

Case 2: If
∣∣N−

a −N+
d

∣∣ ≪ ni, the following approximation can be made
from Eq. 11:

p0 ≈ 0

2
+

√(
0

2

)2

+ n2
i = ni (14)

And since n0:

n0 ≈ n2
i

ni
= ni ≈ p0 (15)

Case 3: If N+
d − N−

a ≫ ni, an analogous reasoning from Case 1 can be
followed, but with n0, and in this case, the following approximation can be
made:

n0 ≈
N+

d −N−
a

2
+

√(
N+

d −N−
a

2

)2

= N+
d −N−

a (16)

And since p0:

p0 ≈ n2
i

N+
d −N−

a
(17)
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Summary: The three preceding cases give us the following results: This
also gives the following results:

p0 ≈


N−

a −N+
d , if

(
N−

a −N+
d

)
≫ ni

ni , if
∣∣N−

a −N+
d

∣∣ ≪ ni

n2
i

N+
d −N−

a
, if

(
N+

d −N−
a

)
≫ ni

(18)

n0 ≈


N+

d −N−
a , if

(
N+

d −N−
a

)
≫ ni

ni , if
∣∣N+

d −N−
a

∣∣ ≪ ni

n2
i

N+
d −N−

a
, if

(
N−

a −N+
d

)
≫ ni

(19)

This also gives the following results:(
N−

a −N+
d

)
≫ ni ⇒ p0 ≫ n0 (20)∣∣N−

a −N+
d

∣∣ ≪ ni ⇒ p0 ≈ n0 ≈ ni (21)(
N+

d −N−
a

)
≫ ni ⇒ n0 ≫ p0 (22)

Exercise 02

Calculate the carrier concentration at thermal equilibrium in a compensated
p-type semiconductor at T = 300 [K] doped with Nd = 3 · 1015

[
cm−3

]
and

Na = 1016
[
cm−3

]
. The intrinsic carrier concentration in this semiconductor is

ni = 1.5 · 1010
[
cm−3

]
.

Solution

An analogous reasoning as the previous one can be applied in this exercise, but
for the sake of simplicity, we will reuse Eq. 8 obtained in the previous exercise.

Once again, as mentioned in the preamble of this series, all dopants are
assumed to be ionized at room temperature. Therefore:

N+
d = Nd & N−

a = Na (23)

Finally:

n0 =
N+

d −N−
a +

√(
N−

a −N+
d

)2
+ 4n2

i

2
≈ 3.21 · 104

[
cm−3

]
(24)

And:

p0 =
n2
i

n0
≈ 7 · 1015

[
cm−3

]
(25)

Notes: This result can also be directly extracted from the approximation de-
veloped in the To Go Further section of Exercise 01.
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Exercise 03

Consider a GaAs semiconductor sample with an intrinsic carrier concentration
of ni = 2.14 · 106

[
cm−3

]
at a temperature of T = 300 [K]. The sample is

doped with a donor concentration of Nd = 1016
[
cm−3

]
and no acceptors Na =

0
[
cm−3

]
. The electron mobility is µn = 8500

[
cm2

V s

]
, and the hole mobility is

µp = 400
[
cm2

V s

]
. Calculate the drift current density for an applied electric field

of E = 10
[

V
cm

]
.

Solution

You have seen during the course that the drift current can be calculated with
this formula:

Jdrift = q (nµn + pµp)E (26)

Again, since we are at room temperature, we will consider all dopants to be
ionized. We can use the Eq. 8 to calculate n0 and p0. This gives us the
following result:

n0 =
N+

d −N−
a +

√(
N−

a −N+
d

)2
+ 4n2

i

2
≈ 1 · 1016

[
cm−3

]
(27)

And:

p0 =
n2
i

n0
≈ 5.81 · 10−4

[
cm−3

]
(28)

Finally, by substituting this value into Eq. 26:

Jdrift ≈ 136

[
A

cm2

]
(29)

To Go Further

In many semiconductors, although the hole mobility is often much lower than
the electron mobility, both remain in the same order of magnitude. On the
other hand, the electron and hole concentrations vary by multiple orders of
magnitude. Therefore, the following approximation is often made:

Jdrift ≈

{
qnµnE , if n ≫ p

qpµpE , if n ≪ p
(30)

Exercise 04

Consider a silicon-based semiconductor bar with a rectangular cross-section at
T = 300 [K] and a doping concentration of Nd = 5 · 1015

[
cm−3

]
. We aim to

convert this semiconductor bar into a p-type semiconductor by introducing a
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doping concentration Na. The resulting semiconductor bar exhibits a resistance
of R = 10 [kΩ] and a current density of J = 50

[
A

cm2

]
when a voltage of V = 5 [V ]

is applied across the bar, generating an electric field of E = 100
[

V
cm

]
within it.

• Find the length L and the area A of the bar.

• Find the doping concentration Na.

Solution

• Find the length L and the area A of the bar.

By applying V = 5 [V ] to the bar, we have an internal field of E = 100
[

V
cm

]
.

Therefore:

L =
V

E
= 0.05 [cm] = 500 [µm] (31)

We also know that the bar has a resistance of R = 10 [kΩ], which means that
at V = 5 [V ], we have:

I =
V

R
= 500 [µA] (32)

And since we want a current density of J = 50
[

A
cm2

]
, we have:

A =
I

J
= 10−5

[
cm2

]
= 1000

[
µm2

]
(33)

• Find the doping concentration Na.

We extract the desired conductivity σ for our parameters:

σ =
L

RA
≈ 0.5

[
Ω−1cm−1

]
(34)

We also know that the conductivity of a semiconductor is defined as:

σ = q (µnn+ µpp) (35)

We want a p-type semiconductor, so we will consider that p ≫ n. As explained
in the To Go Further section of Exercise 03, we will make the following
approximation:

σ = qµpp (36)

And with the previous consideration p ≫ n, we can also use the approximation
developed in the To Go Further section of Exercise 01:

p = N−
a −N+

d (37)

And therefore:
σ = qµp

(
N−

a −N+
d

)
(38)

Finally, with Fig. 1, we will try some points. For example, with Na = 1.25 ·
1016

[
cm−3

]
, we have µp = 410

[
cm2

V s

]
. This gives us:

σ = qµp

(
N−

a −N+
d

)
≈ 0.493

[
Ω−1cm−1

]
(39)
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Figure 1: Electron and hole mobilities versus impurity concentrations for ger-
manium, silicon, and gallium arsenide at T = 300 [K].
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